Kuznetsov's Fano threefold conjectures for quartic double solids and Gushel-Mukai threefolds

發布者:文明辦作者:發布時間:2020-12-21瀏覽次數:10


主講人:張詩卓,University of Edinburgh


時間:2020年12月31日10:00


地點:3號樓332室


舉辦單位:數理學院


內容介紹:It is conjectured that the non-trivial components, known as Kuznetsov components  of derived category of coherent sheaves on every quartic double solid is  equivalent to that of Gushel-Mukai threefolds. I will introduce special  Gushel-Mukai threefold X and its Fano scheme of twisted cubics on it and prove  it is a smooth irreducible projective threefold when X is general and describe  its singularity when X is not general. We will show that it is an irreducible  component of Bridgeland moduli space of stable objects of a (-2)-class in the  Kuznetsov components of the special GM threefolds. I will show that an  irreducible component of Bridgeland moduli space of stable objects of a  (-1)-class in the Kuznetsov component of an ordinary GM threefold is the minimal  model of Fano surface of conics. As a result, we show the Kuznetsov's Fano  threefold conjecture is not true.

大神彩票注册 www.casaladerapv.com:尖扎县| www.club-editeur-web.com:久治县| www.youetme.com:崇信县| www.brushhairandmakeup.com:如皋市| www.byopi.com:新和县| www.lucyssportsbar.com:子洲县| www.92top10.com:蚌埠市| www.sofiamarket.net:乌鲁木齐市| www.mjdxxss.com:镇安县| www.impresacreative.com:陆川县| www.isi-stone.com:大同市| www.duchang999.com:镇平县| www.chilloutcolor.com:江都市| www.mdhrh.cn:嘉黎县| www.frederickpress.net:土默特左旗| www.a2bcourierservice.com:长寿区| www.dannyquattro.com:金阳县| www.dapinlv.com:霍城县| www.xiechangcable.com:东宁县| www.363005.com:梨树县| www.jinli-ml.com:化州市| www.muchasautorepair.com:东兰县| www.gzbjbgs.com:凤冈县| www.maxxsaccessoires.com:西林县| www.wowgoldu.com:望奎县| www.dbarh.com:韩城市| www.xinya-painting.com:紫金县| www.rdzfw.com:淳安县| www.usfluence.com:通州区| www.chambres-dhotes-le-cigalon.com:巴楚县| www.du-pin.com:渑池县| www.7088t.com:石景山区| www.trebroncompany.com:乌兰浩特市| www.allfanpage.com:嘉峪关市| www.mf-moto.com:德保县| www.taynelemon.com:青河县| www.feastbookstore.com:唐河县| www.vivaviralvideo.com:蒙山县| www.66356gg.com:蕉岭县| www.kfuyn.cn:灵山县| www.simonsapartments.com:运城市| www.puzzle-tours.com:张家港市| www.ostseeportal.org:凤城市| www.yunlvhuahui.com:牙克石市| www.fxptgs.com:河津市| www.agen66.com:沙雅县| www.alao333.com:平南县| www.dropscience.net:博兴县| www.gcyy-120.com:黄骅市| www.lgtopc.com:延安市| www.csjwa.com:伊春市| www.raysh-ic.com:普宁市| www.ruru222.com:英吉沙县| www.zstsjd.com:鄂托克旗| www.zhimeijie.com:东兰县| www.hndth.com:荥经县| www.axshiye.com:南郑县| www.dhc-net-cn.com:泰来县| www.hg61456.com:郎溪县| www.ningmengwl.com:沅江市| www.daogou001.com:丽江市| www.schmitzfinefood.com:亚东县| www.zghnfzw.com:沙洋县| www.13902948564.com:高安市| www.shstlawyer.com:临海市| www.r7586.com:股票| www.phototuredesigns.com:叙永县| www.nebraskaairshow.com:沙洋县| www.hk211.com:安国市| www.lbgnjy.com:普兰县| www.ou-guo.com:灵宝市| www.shnanxiang.com:霍城县| www.sweetarch.com:饶河县| www.jl095.com:古浪县| www.patricshawbeauty.com:栾川县| www.intdz.com:夏邑县| www.lplfh.cn:宣威市| www.choraliter.com:徐水县| www.akillipet.com:松江区| www.wfyulong.com:诸暨市| www.summonerscentral.com:祁东县| www.atramusic.com:神农架林区| www.taikunco.com:田东县| www.xjydylny.com:扶绥县|